- Bergman, Torbern Olof (1735-1784)
Born: Katrineberg (Sweden), 20 March 1735 Died: Medevi (Sweden), 8 July 1784
- Bergman was a very talented and many-sided scientist who contributed to physics, astronomy, geology and mineralogy, but above all to chemistry. He obtained his doctorate at the University of Uppsala in 1758 and became professor of chemistry in 1767 after Wallerius. Bergman’s main claim to fame is the development of quantitative analysis by the wet way which he first published in 1778 (De analysi aquarium). He also studied carbon dioxide and, based on his thorough chemical knowledge and analytical skills, developed procedures to make artificial mineral waters. Bergman was one of the founders of chemical mineralogy and he also devised an improved version of Geoffrey’s affinity tables. Although Bergman died of tuberculosis before reaching the age of 50, he developed Uppsala to a leading centre of chemistry in Europe. Bergman’s talented students like Scheele, Gadolin, Hjelm and the Elhyar brothers carried on his work. During his lifetime the translation of Bergman’s works, originally published in Latin or Swedish, had been initiated; in France the translator was Gyuton de Morveau.
- Berthollet, Claude Louis (1748-1822)
Born: Tailloire (France), 1748 Died: Arceuil near Paris (France), 1822
- Berthollet studied medicine in Turin (1768). In 1784 he became director of the national Gobelin factories and in 1794 professor of chemistry at the Ecole polytechnique. Berthollet was one of the first chemists to adopt Antoine Lavoisier´s antiphlogistic system. He defended the opinion that the quantitative composition of chemical compounds depends on the relative quantities of the reagents during reactions. His investigations of ammonia and halogen salts were exemplary. He introduced chlorine as bleaching agent. Berthollet was considered one of the leading chemists of his time and was greatly honoured during his lifetime.
- Black, Joseph (1728-1799)
Born: Bordeaux (France), 1728 Died: Edinburgh (Scotland), 1799
- Black studied languages and natural philosophy in Glasgow in 1746 and medicines in 1748. He obtained a doctors degree from Edinburgh in 1754. From 1756 – 1766 he was professor at Glasgow and later in Edinburgh from 1766 – 1799. Black studied gases by heating calcium carbonate and eventually obtained “fixed air”, carbon dioxide. He later introduced this research to his pupil Daniel Rutherford. He was convinced that heat, light and electricity were intangible, unweighable matter. He discovered magnesium carbonate in 1755.
- Cavendish, Henry (1731-1810)
Born : Nizza (France), 1731 Died : London (England), 1810
- Cavendish studied natural sciences at Cambridge from 1749-1753. From 1753 he carried out private laboratory investigations on gases and discovered hydrogen and nitrogen using an improved eudiometer. He determined the densities of various gases and studied the composition of water. Cavendish was able to determine the gravitational constant in Newton’s laws.
- Gadolin, Johan (1760-1852)
Born: Turku (Åbo), Finland, on June 5, 1760 Died: Mynämäki (Virmo), Finland, on August 15, 1852
- Gadolin’s family included scientists and clergymen; both his father and maternal grandfather were Professors of Physics at the Royal Academy of Turku. Finland belonged at that time to Sweden and thus it was natural for the young Gadolin to go to the University of Uppsala to continue his studies in chemistry under Professor T. Bergman. Gadolin’s doctoral thesis on the analysis of iron was finished in 1781. During 1786-88 Gadolin made an extensive study tour in Europe visiting among others R. Kirwan in Ireland. He was appointed in 1797 to the chemistry professorship in Turku, a post he held until his retirement in 1822. Most of his publications dealt with inorganic and analytical chemistry but he also made significant contributions to thermochemistry. Gadolin’s best known achievement was in 1794 the discovery of yttria which was a new earth (element in oxide form), present in a black mineral found seven years earlier in Ytterby quarry near Stockholm. This was the first rare earth (lanthanide) element discovered; later the mineral was named in his honour gadolinite and element 64 gadolinium. Gadolin wrote in 1798 “Inledning till Chemien” (Introduction to chemistry) which is considered to be the first antiphlogistonic textbook in Swedish.
- Kirwan, Richard (1735-1812)
Born: Cloughballymore, County of Galway (Ireland), 1 August 1733 Died: Dublin (Ireland), 22 June 1812
- Kirwan studied law in the University of Poitiers, then in England and Germany and practised it as a lawyer in London. Much of his chemical research was done in his house in London. He returned in 1787 permanently to Dublin becoming in 1799 President of the Royal Irish Academy. Kirwan drew up the first table of specific heats in 1780 and defended the phlogiston theory supposing phlogiston to be identical with hydrogen. Kirwan’s book on phlogiston was translated into French by Madame Lavoisier with a rebuttal added by her husband. By the middle of the 1790s Kirwan’s publications show that he also had adopted Lavoisier’s views. Kirwan belonged to the leading analytical chemists of his time carrying out accurate analyses of minerals and mineral waters. During his studies on affinity he also determined the equivalent weights of mineral acids and some metals.
- Klaproth, Martin Heinrich (1743-1817)
Born: Wernigerode (Prussian Saxony), 1743 Died: Berlin (Germany)
- Kirwan studied law in the University of Poitiers, then in England and Germany and practised it as a lawyer in London. Much of his chemical research was done in his house in London. He returned in 1787 permanently to Dublin becoming in 1799 President of the Royal Irish Academy. Kirwan drew up the first table of specific heats in 1780 and defended the phlogiston theory supposing phlogiston to be identical with hydrogen. Kirwan’s book on phlogiston was translated into French by Madame Lavoisier with a rebuttal added by her husband. By the middle of the 1790s Kirwan’s publications show that he also had adopted Lavoisier’s views. Kirwan belonged to the leading analytical chemists of his time carrying out accurate analyses of minerals and mineral waters. During his studies on affinity he also determined the equivalent weights of mineral acids and some metals.
- Lavoisier, Antoine Laurent (1743-1794)
Born: Paris (France), 1743 Died: Paris (France), 1794
- Lavoisier studied classic literature, philosophy, logics, astronomy, geology at the Collège Mazarin. Lavoisier started his chemical research in 1764. He developed a new method for preparing salpeter (1770). In 1776 he proposed a theory of combustion based on oxidation (anti-phlogiston). In 1787 he introduced a new nomenclature of chemical compounds (together with Berthollet, Fourcroy and Guyton de Morveau). In 1789 Lavoisier published his textbook “Elementary Treatise on Chemistry”. He died during the French Revolution in 1794 under the guillotine, because of his work as tax-farmer.
- Lomonosov, Mikhail Vasilievich (1711-1765)
Born: Denisovka near Archangelsk (Russia), 1711 Died: St. Petersburg (Russia), 1765
- Lomonosov was the son of a fisherman who taught himself classical languages and philosophy. In 1736-1741 he spent in Germany where he also studied the sciences. In 1745 he was appointed professor of chemistry. Lomonosov was a poet and grammarian who is often considered to be the first great Russian linguistic reformer, but he also did extensive works on the topics of chemistry and physics. Departing from an atomistic concept of matter he predicted that heat is produced by rotating particles with high friction, thus denying the validity of the then prevalent phologiston theory of combustion. He also did research on colours and on glass.
- Priestley, Joseph (1733-1804)
Born: Fieldhead (England), 1733 Died: Northumberland (USA, Pennsylvania), 1804
- Priestley was a Unitarian minister and he never studied science formally. Under the influence of Benjamin Franklin, Priestley carried out research on electricity (1769). In 1772 he isolated a number of gases, such as nitrous oxide and in 1774 he isolated a new gas “dephlogisticated air” (oxygen) and studied the properties of this new gas. Priestley also recognized the fact that plants were influenced by light (photosynthesis).
- Richter, Jeremias Benjamin (1762-1807)
Born: Hirschberg (Jelenia Gora) (Germany), 1762 Died: Berlin (Germany), 1807
- Richter studied philosophy, under Immanuel Kant, and mathematics at Königsberg. In1785 he obtained a doctoral degree with a dissertation on the use of mathematics in chemistry. He never reached an academic position and experimented at his own expense. His most important contribution to chemistry was the discovery of the law of equivalent proportions. He also introduced the term ‘stoichiometry’ into chemistry.
- Ruprecht, Antal (1748-1818)
Born: Schmöllnitz/Smolnik (Hungary, now Slovakia, 1748 Died: Wien (Austria), 1814
- Ruprecht graduated from the Mining Academy of Selmecbány established in 1763. He was appointed to be professor chemistry and metallurgy in 1779. He was among the first who regarded the so-called “soils” as complex substances, and tried to show this by experiments. He succeeded in melting platinum first and he had a part in the discovery of tellurium.
- Scheele, Carl Wilhelm (1742-1786)
Born: Stralsund (Sweden), 9 December 1742 Died: Köping (Sweden), 21 May 1786
- At the age of fourteen Scheele was apprenticed to an apothecary in Gothenburg and later in Malmö where he started to conduct chemical experiments. While working in a pharmacy in Uppsala in 1770 he was introduced to the leading Swedish chemist of that time T.O. Bergman. Scheele received advice and help from Bergman but never formally studied chemistry. Nevertheless, he became one of the greatest experimental chemists of all times discovering new elements and substances in greater variety than any other person before him. He was involved in the discovery of the elements and simple compounds of chlorine, fluorine, manganese, barium, molybdenum, tungsten and oxygen. It has been established that Scheele’s discovery of oxygen took place in 1771, or before Priestley and Lavoisier. Scheele published his studies mostly in the proceedings of the Royal Academy of Sciences in Stockholm which called the self-made scientist to be its full member. Due to the significant achievements in inorganic chemistry, Scheele’s accomplishments in organic chemistry are often overlooked. He was the first one to separate and characterise organic acids such as tartaric, citric, benzoic, malic and oxalic. Since 1775 Scheele worked as an apothecary in a small town of Köping where he also died at the early age of 43 years. His death may have been caused by long-term exposure to highly toxic substances such as arsenic acid and hydrogen cyanide which also belong to the compounds first prepared by Scheele.
- Vauquelin, Louis Nicolas (1763-1829)
Born: Hébertôt (France), 1763 Died: Hébertôt (France), 1829
- Vauquelin studied pharmacy in Rouen and in Paris (with Fourcroy). He became professor at the Ecole Polytechnique (Paris), the Collège de France (1801), the Special School for Pharmacy (1804-1811), the Jardin des Plantes (1811-1823) and at the Medical Faculty of the Sorbonne. He discovered beryllium (1789) and osmium (1804). In 1806 he isolated the first amino acid “asparagine”.